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Introduction

Naive Dirac operator on the lattice

Dnaive =
1

2
γµ(∂

?
µ + ∂µ) +m

describes 16 Dirac fermion copies or tastes

∃M such that: I det(aM) = {det(aDnaive)}1/4
√

I M describes 4 tastes as a→ 0
√

Answer: staggered fermion operator

M =
∑

µ

1

2
η(x, µ)(∂

?
µ + ∂µ) +m

acts on fields χ(x), χ̄(x) with one independent Grassmann variable per site

∃ D such that: . det(aD) = {det(aM)}1/4 ?

. D describes 1 Dirac fermion as a→ 0 ?
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Introduction

Construction of the taste basis for staggered fermions

• free theory in momentum space [H.S. Sharatchandra, H.J. Thun and P. Weisz, 1981]:

4 degenerate tastes, non-local fields in coordinate space

• in coordinate space [H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, 1983]:

4 hypercube taste-fields, O(a2) taste-changing interactions (even in the free theory!)

How to simulate 2 dynamical quarks?

• reduced staggered formalism [H.S. Sharatchandra, H.J. Thun and P. Weisz, 1981]:

χ lives only on odd sites and χ̄ only on even sites

– complex determinant, no U(1) axial symmetry [C. van den Doel and J. Smit, 1983]

• the square root trick [in 2D QED: E. Marinari, G. Parisi and C. Rebbi, 1981]:

take
√

det(aM) as the Boltzmann weight

– in the classical continuum limit taking square root = quenching 2 out of 4 tastes

[C.W. Bernard and M.F.L. Golterman, 1994]

– this is not a first principle formulation
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Introduction

The locality problem at a glance

1. QCD partition function on the lattice, only local operators appear

Z =

∫

U,ψ̄,ψ

exp

{

−Sg(U) + a
4
∑

x

ψ̄(x)Dψ(x)

}

2. Integration over fermionic fields ψ̄, ψ ends up with non-local effective action

Z =

∫

U

det(aD) exp {−Sg(U)} =
∫

U

exp {−Sg(U) + tr ln(aD)}

For two tastes of staggered fermions the starting point is 2. with an effective action

Seff = −Sg(U) +
1

2
tr ln(aM) ↔

√

det(aM)

• how can renormalizability and universality be discussed?

• how can causality be established with a non-local action?

⇒ need a local formulation in terms of fundamental degrees of freedom
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Introduction

The problem is hidden behind present simulations . . .

• algorithms deal with the square root of the determinant, which can be

→ treated using pseudofermion fields

→ simulated with

− R algorithm (extrapolation to the zero molecular dynamics step–size limit) [S.

Gottlieb, W. Liu, D. Toussaint, R.L. Renken and R.L. Sugar, 1987],

− PHMC algorithm (exact algorithm) [JLQCD, S. Aoki et al., 2003]

− RHMC algorithm (exact algorithm) [M.A. Clark and A.D. Kennedy, 2003]

• quark propagators are computed using M , sources project onto the desired valence

taste components, adjustments are needed for flavor singlets like η′ [C.W. Bernard and

M.F.L. Golterman, 1994; DeGrand 2003]

. . . but is there!
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Introduction

Is the continuum theory defined by taking the Boltzmann weight
√

det(aM) local? ⇔

Can a fermion operator D with kernel

aDψ(x) = a
4
∑

y

G(x, y)ψ(y)

be found, which satisfies

det(aD) =
√

det(aM) and ‖G(x, y)‖ ≤ Ce−γ‖x−y‖E/a ,

with C and γ > 0 independent of U?

(‖G(x, y)‖ is the operator norm, ‖x− y‖E is the Euclidean norm)

Only local gauge paths are allowed in D

This is a requirement for universality to hold [P. Hernández, K. Jansen and M. Lüscher,

1999; F. Niedermayer, 1999]
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Analytic study of a candidate two-taste operator

Numerical simulations of 4 tastes of staggered fermions use

(M
†
M)e

M†M acting on fields defined on the even sites only [O. Martin and S.W. Otto, 1985]

det(aM) = det(a
2
(M

†
M)e)

In this work we investigate the candidate

D =
√

(M†M)e

defined by a series of Chebyshev polynomials which approximates the unique hermitean

positive definite square root of (M †M)e
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Analytic study of a candidate two-taste operator

Free theory

M†M acts like a Laplace operator on the 16 sublattices with lattice spacing 2a

Kernel G(x, y) of
√
M†M on one sublattice

G(x, y) =

∫ π/(2a)

−π/(2a)

d4p

π4

√

(am)2 +
∑

µ

sin2(pµa) e
ip(x−y)

,
xµ − yµ

a
even for all µ

Its continuum version is (y = 0)

∫

d4p

(2π)4

√

p2 +m2 e
ipx

= − 1

4π2

m2

‖x‖3E

(

1 +
3

m‖x‖E
+

3

m2‖x‖2E

)

e
−m‖x‖E

The operator D is non-local in the free continuum limit at the scale

r
(free)
loc = 1/m
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Analytic study of a candidate two-taste operator

I the analytical results prove the non-locality of the continuum free theory
defined by the operator D =

√

(M †M)e

I it is very unlikely that the interacting theory will turn out to be local, at
best one can hope that the bound rloc = 1/m becomes for example

rloc =
1

large hadron mass
?

(similar studies in the overlap case showed that the analytical bound is
only poorly satisfied on a real MC gauge ensemble, see [P. Hernández,
K. Jansen and M. Lüscher, 1999])
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Numerical results

Locality study [P. Hernández, K. Jansen and M. Lüscher, 1999] : consider source field

ξc(x) =

{

1 if x = y and c = 1

0 otherwise

compute decay properties of

ψ(x) = aDξc(x)

f(r) = max
{

‖ψ(x)‖
∣

∣ ‖x− y‖1 = r
}

‖x− y‖1 =
∑

µ

min{|xµ − yµ|, L− |xµ − yµ|} “taxi-driver distance”

I ‖ψ(x)‖ is the norm in SU(3) color space

I ‖x − y‖1/a is the number of links for the shortest path between x and y using the

periodicity of the lattice, largest possible value is 2L/a

I quenched study, three β values (6.0 , 6.2 , 6.5) on a line of approximately constant

Goldstone pion πG mass r0mG = 1.30(3)

I two sets of physical volumes LmG ≈ 4 and LmG ≈ 6, periodic boundary conditions

for gauge and fermion fields
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Numerical results
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localization range 〈f(r)〉 ∝ e−r/rloc(r)

rloc(r/r0 = 1.86)mG = 0.455(12)

rloc(r/r0 = 3.72)mG = 1.06(5)

a local operator has rloc(r) = O(a) , ∀r
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Conclusions

I We have studied the square root of the staggered Dirac operator (M †M)e

as a candidate to define a 2 tastes theory of staggered fermions

I Analytic results in the free field limit prove that this theory is non-local
at the scale of the inverse quark mass

I Simulations in quenched QCD on a line of constant Goldstone pion mass
r0mG = 1.30(3) give the continuum limit result

1.06(5) ≤ rlocmG ≤ 2.8(6)

The upper bound is for the volume LmG ≈ 6
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Outlook

. We do not expect improved actions like Asqtad or HYP to show a better
behavior for the square root operator as smoothing the gauge links only
makes the situation closer to the free case

. The question, whether a local operator D with Boltzmann weight
√

det((M †M)e) exists, is left open

. Present dynamical simulations do not use this setup: if local D is found
then

– configurations generated by present algorithms are safe
– unitarity problem: D will dictate the appropriate Green’s functions

for a 2 taste theory, most likely not the ones built with the 4 taste
operator M
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